AD-A152 924

UNCLASSIFIED

CLERNROOH SDFTHRRE DEVELOPMENT: AN_ENPIRICAL EYRLUATION
(U) MARYLAND UNIY COLLEGE PARK DEPT OF COMPUTER SCIENCE
R N SELBY ET AL. FEB 85 TR-1415 AFOSR-TR-85-8292
F49628-80-C-88081 F/

Fuwen

omic

mv..v—.w.v.r.rvxv.fr FOLAdl arut i i lahl M 28T A menc saul SV pond gt Z ol aiL. N ST i e R el ™

o

T

[
o
o~
Ly
e
L
L
-
>,

ml |0 & “m:% l=
= & 22 "m 22 i

g EX ,

2

22 s nie

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

e

Bt

:
A

Coo MR

LI N et aalbaad adiie B S SN o6 4

~— @ e .

«t LY. - . . -

S - L . o - . - T e . . D - PN " . St et . .
o - . P . . P L .- . . X . . - . N LT - T ey
.. N N . . . s LI . P - o
T c - : . - Se- et L ST .~ . - S .'..\'.\|
- ~ - - ateaa S FRDTULAP TR WA TS U WA ST YA S G R S G UPY U WAL WiV S ST WHE TR Gl W B Y WY G |

A/l Bas Mot S Ak bod B el ARl VAl S R e A A

~ A A uaNid - ."7?‘?‘-‘.‘7. " ;?; Y A~ e ,."'._A ot - ,"w . L
N REPRODUCED AT GOVER EXPENSE
r':‘\ ‘. - LSy -
) AFOSK-TR. 85.0292
|
{
Technical Report TR-1415 February 1985

CLEANROOM Software Development:
An Empirical Evaluation

Richard W. Selby, Jr.
Victor R. Basili
F. Terry Baker

AD-A152 924

Department of Computer Science
University of Maryland
College Park

COMPUTER SCIENCE .
TECHNICAL REPORT SERIES

DTIC

ELECTE
ANZ%&E)

UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND
20742

e HLE COPY

Approvedtor “
publie reloas '
distribut.ion unlimited, #

.....................

LACSLEING Sna et groh e e s e Lamut Jmnd ade e i mtent)

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE l

19 REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS |
B |

UNCLASSIFIED
26 SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public releaseyj distribution
20 DECLASSIFICATION/DOWNGRADING SCHEDULE unlimited.
4 PERFORMING ORGANIZATION REPORT NUMBERI(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

TR-1415 AFOSR-TR- 85-0292

6a. NAME OF PERFORMING ORGANIZATION rb. OFFICE SYMBOL 7s. NAME OF MONITORING ORGANIZATION

University of Maryland (11 applicabie)
Air Force Office of Scientific Research

6c. ADODRESS (City, State and ZIP Code) 70. ADORESS (City, State and ZIP Code)
Department of Computer Science Directorate of Mathematical & Information
College Park MD 20742 Sciences, Bolling AFB DC 20332-6448
8s. NAME OF FUNDING/SPONSORING 80. OFFICE SYMBOL |9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (I epplicable)
AFOSR NM F49620-80-C-0001
8c ADDRESS (City. State and ZIP Code) 10 SOURCE OF £ UNDING NOS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.
Bolling AFB DC 20332-6448 61102F 2304 A2

11. TITLE (Inciude Security Classification)
CLEANROOM SOFTWARE DEVELOPMENT: AN EMPIRICAL EVALUATION
12. PERSONAL AUTHOR(S)

Richard W. Selby, Jr., Victor R. Basili and F. Terry Baker
13a TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr K Mo., Day) 15 PAGE COUNT

Technical FROM T0 FEB 85 29
18. SUPPLEMENTARY NOTATION

COSATI CODES 18 SUBJECT TERMS (Continue on reverse i/ necessary and identify by dlock numbder)
FIELD GROUP SUB. GR. Software development methodology; off-line software review;

software measurement; methodology evaluation; software
management; empirical study. <==_

19. ABSTRACT (Continue on reverse if necessary and identify by block number;

The Cleanroom software development approach is intended to produce highly reliable software
by integrating formal methods for specification and design, complete off-line development,
and statistically baded testing. In an empirical study, 15 three-person teams developed
versions of the same software system (800 2300 source lines ten teams applied Cleanroom,
while five applied a more traditional approach This analysis characterizes the effect of
Cleanroom on the delivered product, the software development process, and the developers.
The major results of this study are (1) most developers were able to apply the techniques
of Cleanroom effectively; (2) the Cleanroom teams' products met system requirements more
completely and had a higher percentage of successful test cases; (3) the source code

® developed using Cieanroom had more comments and less dense complexity; (4) the use of
§ Cleanroom successfully modified aspects of development style, and (5) most Cleanroom
: developers indicated they would use the approach again. S e Al
-
- 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
.." uncLassiFio/unuimiTep & same as aer. O oTic users O UNCLASSIFIED
o 22s. NA . OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL
; (Include Area Code)
S CPT John P. Thomas, Jr. (202) 767- 5026 NM
' - DD FORM 1473, 83 APR eomo~ F 1 JAN 3815 OB5OL UNCLASSIFIED
@ 8 4 2 1 1 2 SECURITY CLASSIFICATION OF THIS PAGE

Padit i e Al et A sasr atelung e dbo AR~ A Nl il il S P Bt TN LRI

. Technical Report TR-1415 February 1985

CLEANROOM Software Development:
An Empirical Evaluation

Richarxrd W. Selby, Jr.
Victor R. Basili
F. Terry Baker

Department of Computer Scilence
University of Maryland
College Park

DTIC

ELECTE]
APR26 985

KEYWORDS: software development methodology, off-line software review,

software measurement, methodology evaluation, software management,
empirical study

Research supported in part by the AFOSR Contract AFOSR-F 49620-80-C-0001
to the University of Maryland. Computer support provided in part by the
Computer Science Center at the University of Maryland.

carremTRTo PROTINAR rarem

ATR FO=7E 007777 0T
NOT1O
Tt
— - oo . apn
DISTRIBUTION STATEMENT A byoe -
Approved MATTHL -
Dm?ﬂp‘;;’m Cpief, Teotmlcai Laiar Toom rivision

. o L. . - . PO A - .- . . . -
N T T D LAY . . . - - e LTRSS YT
L P T T Tactet - . Ter . CR AL T e, .
v B PR -

. - . » . . -
. . AT e A . . e . .
P DL LU, U, R Ry, S S . S oy YL, s SR P

A Zagi Jhufh Tl Miad-Riatn

Tas e oo u i A AL SR GE SR
v o .

LA st 2 B Jaes dhewmue Zegm o Reitoies e s ate fan Jhaie tind e it S SuAan ot * ot e olintlin At 4% Sl Sl prafh gt st ol ™ of

ABSTRACT

The Cleanroom software development approach is Intended to produce highly rell-
able software by Integrating formal methods for specification and design, complete off-
. llne development, and statistlcally based testing. In an emplirical study, 15 three-person
teams developed versions of the same software system (800 — 2300 source llnes); ten
teams applled Cleanroom, while five applled a more tradltlonal approach. This analysls
characterizes the effect of Cleanroom on the dellvered product, the software develop-
ment process, and the developers. The major results of thls study are 1) most develop-
ers were able to apply the technlques of Cleanroom effectlvely; 2) the Cleanroom teams’
products met system requirements more completely and had a hlgher percentage of suc-
cessful test cases; 3) the source code developed using Cleanroom had more comments
and less dense complexity; 4) the use of Cleanroom successfully modified aspects of

development style; and 3) most Cleanroom developers indicated they would use the

approach agaln.

“ aceessian For

- . - --. N - R - . o, . P
Y e ae A Y e PN AP P PR A, Uy

ALY
L A A IR PR

A I LI N

SecatalialiniaiaS eia . ns

T

I."-':"'-"‘.' R LA ES

CEACHR 4o S und i A S M e At Se bes ArAl Are et "B ket - Rt Ret _indJiall Aat et ARE b Al oL oty

)
Table of Contents .
D3 0214 foTs £ 117 Lo} + S UL v 1
2 Cleanroom Software DevelOPIIent .c.c.ccccceecessecnsesscacasasasncasess erevessvsnasasrovasasanassnse v 1
2.1 InvestiZatlon GORIS ...cceerereererercessnerences reresseesesssssssnns resessrasossessansasans ceersesaressen 3)
3 Emplrical Study Uslng Cleanrocom ...c.ceceeees ereesrstttastnctteensatsrntasaesenanaantsansersessesrusnre 4
3.1 Case Study DeSCriPUON ciiicererecsscscscssossosecsssassecssosnesasessecsanss resesesesnsnnse seseesansne 5 :
3.2 Operational Testing of ProJects ...ccccccuesveces eescesatesrertrsncreesesestetssetesasensarennnaaens 7
4 Data Analysls and Interpretation ..c.ccceceeceensacces sessenasarasrssnscsasansese receeserenasacs cesvovennse 8
4.1 Characterization of the Effect on the Product Developed ...cccceccerrerecareceneoneas]
4.1.1 Operational System Propertles ..c.ccccecceceseccerssescocescasscassarsssencsene sesssncnses 9
4.1.2 Statlc System PTropertlescccccececececresoncsenns cseressansasasas seessesnssreeas 12
4.1.3 Contribution of Programmer Backgroundccccccaeceeee. secvesesans recreccnnns 14
4.1.4 Summary of the Effect on the Product Developed sessrccns cressesesraracss 15 ’
4.2 Characterizatlon of the Effect on the Development Process secnesrases 15
4.2.1 Summary of the Effect on the Development Process cesrnene eesnes 20
4.3 Characterization of the Effect on the DevelODerS .iiicccceceercescsscaceceresscsccresssens 20
4.3.1 Summary of the Effect on the DevelODers .icccciireeciaescseseecieiacsesrossossanees 23
4.4 DIStInCtion AMONZ TEAMS .ccceecorererercseasrssssscsscscacesssenseoasesassssesssssscseseassnsesssssss 23
5 CORCIUSIONS euivtticerrcrtrecsrensrecsccassessesstssosrasnstesssasessessssnsssssssasssenssssnssssaosassassessasnone 24
8 ACKNOWICAZEMENT .eurucereirererarrrnresscrcsssarsossssssesssertasusassessssssssasssessnserssnassossessansnennse 28
T AppendlX A. eeeceieieininnae. ereesentaceretsrtecraterasastetentatntsttetssetssstrsnatrensaseas ceresesensesssensas 26
B REIEIEICES .ivirieiceirrasiecnsenriencrsecnncasessssststseanessssressncssssrassnstesasesssssrsssssssssessasaesasssass 27 1
i
{
I VI LL_ML e i S ittt it

s Bl T
[ooe e ea Jue Bes 2 ol gen BE-u e e ca s s w b e sl e Gk Sad Suh St A adie it el A T i IR S i RN .

T 15

T IR

1. Introduction

The need for discipline In the software development process and for hlgh quallty
software motlvates the Cleanroom software development approach. In additlon to
improving the control durlng development, this approach Is Intended to dellver a pro-
duct that meets several quallty aspects: a system that conforms with the requirements, a
system wlith hlgh operational rellabllity, and source code that Is easlly readable and

modiflable.

Sectlon II describes the Cleanroom approach and a framework of goals for charac-
terizing its effect. Sectilon IIl presents an empirical study using the approach. Section
IV ¢glves the results of the analysls comparing projects developed using Cleanroom with

those of a control group. The overall concluslons appear In Sectlon V.

2. Cleanroom Software Development

The Federal Systems Dlvislon of IBM [Dyer 82, Dyer & Mllls 82| presents the
Cleanroom software development method as a technlcal and organlzational approach to
developlng software with certifiable rellabllity. The tdea 1s to deny the entry of defects
during the development of software, hence the term ‘‘Cleanroom.’” The focus of the
method Is imposing discipline on the development process by integrating formal methods
for specificatlon and deslgn, complete off-line development, and statistically based test-
Ing. These components are Intended to contrlbute to a software product that has a high

probabllity of zero defects and consequently a high measure of operational rellablllity.

The mathematically-based design methodology of Cleanroom Includes the use of

structured speclificatlons and state machine models [Ferrentlno & Mllls 77]. A systems

1

. 8- e T y e T . R SN N N I S S B L

B . - <

A AG R R g i A e A St e i i i b e e e A A A
o - - - Bl -

engineer Introduces the structured speciflcations to restate the system requlrements pre-
clsely and organlize the complex problems Into manageable parts [Parnas 72]. The
speclificatlons determlne the ‘‘system archlitecture’ of the Interconnections and grouplngs
of capabllltles to which state machlne design practices can be applied. System Imple-

mentation and test data formulation can then proceed from the structured specifications

Independently.

The right-the-first-time programming methods used ln Cleanroom are the ldeas of
functionally based programmling In [Mllls 72b, Linger, Mills & Witt 79]. The testing
process Is completely separated from the development process by not allowlng the
developers to test and debug thelr programs. The developers focus on the technlques of
code lInspectlons [Fagan 78|, group walkthroughs [Myers 78], and formal verificatlon
(Hoare 69, Linger, Mills & Witt 79, Shankar 82, Dyer 83] to assert the correctness of

thelr Implementatlon. These constructlve technlques apply throughout all phases of

development, and condense the activitles of defect detectlon and Isolatlon Into one
operation. This dlsclpline 1s imposed with the Intentlon that correctness Is ‘*designed”
Into the software, not ‘‘tested' In. The notlon that **Well, the software should always

be tested to ind the faults’ 1s ellmlinated.

In the statistically based testing strate-y of Cleanroom, Independent testers slmu-
late the operatlonal environment of the system with random testing. Thlis testilng pro-
cess lncludes defilning the frequency distributlon of Inputs to the system, the frequency
distributlon of dlifferent system states, and the expandlng hlerarchy of developed system
capabliities. Test cases then are chosen randomly and presented to the serles of product

releases, while concentrating on functlons most recently dellvered and malntalning the

~

PR B T S L
AT B G U TS VT Y G VO W WA e

overall composlte distribution of inputs. The independent testers then record observed
fallures and determlne an objlectlve measure of product rellablillty. It Is belleved that
the prior knowledge that a system wlill be evaluated by random testlng will affect system

rellabllity by enforcing a new discipline into the system developers.

2.1. Investigation Goals

Some Intrigulng aspects of the Cleanroom approach Include 1) development without
testing and debugging of programs, 2) Independent program testlng for quallty
assurance (rather than to find faults or to prove ‘‘correctness’” [Howden 76}), and 3)
certification of system rellabllity before product dellvery. In order to understand the
effects of uslng Cleanroom, the following three goals are proposed: 1) characterize the
effect of Cleanroom on the dellvered product, 2) characterize the effect of Cleanroom on
the software development process, and 3) characterize the effect of Cleanroom on the
developers. An applicatlon of the goal/questlon/metric paradigm [Basill & Selby 84,
Baslll & Welss 8+4] leads to the framework of goals and questlons for this study appear-
Ing in Flgure 1. The emplrical study executed to pursue these goals Is described ln the

followling sectlon.

N arens i a s B e aes sagr st gl Unl vhA el Nl aaf il vnl Sl ! of ondh Pad s i Rl el guy awmT W ws sm e '._'.."'3".‘\“'_‘\1'

L e Sl S Arh Al Ak B A A e v A~ e A AD AL ltan Jae B S Sds A auian i G “aite vull Sl Wl Sl P A A LA

A St Sl A B .

Filgure 1. Framework of goals and questions for Cleanroom development approach

[. Characterize the effect of Cleanroom on the delivered product.
A. For Intermedlate and novice programmers bulldlng a small system, what were
the operational propertles of the product?
1. Did the product meet the system requirements?
2. How dild the operational testlng results compare wlth those of a control
group?
B. What were the statlc propertles of the product?
1. Were the slze propertles of the product any different from what would be
observed 1n a tradltlonal development?
2. Were the readabllity propertles of the product any different?
3. Was the control complexity any different?
4. Was the data usage any different?
5. Was the Implementation language used any differently?
C. What contribution did programmer background have on the final product quall-
ty?
II. Characterize the effect of Cleanroom on the software development process.
A. For Intermedliate and novice programmers bullding a small system, what tech-
nlques were used to prepare the developing system for testing submisslons?
B. What role dld the computer play in development?
C. Did they meet thelr delivery schedule?
ITI. Characterize the effect of Cleanroom on the developers.
A. When intermedlate and novice programmers bullt a small system, dld the
developers mlss the satisfaction of executing thelr own programs?
1. Did the missing of program execution have any relatlonshlp to programmer
background or to aspects of the dellvered product?
B. How was the deslgn and codlng style of the developers affected by not belng able
to test and debug?
C. Would they use Cleanroom again?

3. Empirical Study Using Cleanrocom

This section describes an emplrical study comparing team prolects developed using

Cleanroom wlith those using a more conventlonal approach.

e S SR T e oul e et b ot o S A Sl e A A e -,.;-Tv_.,v_r_,_-,'—“r_v—,v_._r.._rT
b PR A e b o A~ . Il o g "

3.1. Case Study Description

Sublects for the emplrical study came from the *“‘Software Design and Develop-
ment’’ course taught by F. T. Baker and V. R. Basill at the Unlversity of Maryland In
"he Falls of 1982 and 1983. The Inltial segment of the course was devoted to the
presentation of several software development methodologles, Including top-down design,
modular speclfication and deslgn, PDL, chlef programmer teams, program correctness,
«>de readilng, walkthroughs, and functional and structural testlng strategles. For the
latter part of the course, the Indlviduals were dlvided lnto three-person chlef program-
nier teams for a group project [Baker 72, Mills 72a, Baker 81]. We attempted to dlvide
th teams equally according to professional experience, academlc performance, and
Impiementatlon language experience. The subjects had an average of 1.8 years profes-
slonal experlence and were computer sclence majors wlith Junlor, senlor, or graduate

standing. Flgure 2 dlsplays the dlstribution of the sublects’ professional experience.

Flgure 2. Sublects’ professional experlence In vears.

X

X X

X XX X

X XXXX X

X XXXXX X X X

X XXXXX X XX XX XX XX XX X X
-t - - e
0 1 2 3 4 5 8 7

A requlrements document for an electronlc message system (read, send, malling
llsts, authorlzed capabliltles, etc.) was distributed to each of the teams. The project was

to be completed In six weeks and was expected to be about 1200 llnes of Simpl-T source

- - L " P " N T . \'.‘.. . . : .. . ’ . . N '}
gt PR . c - o\ T UL & T SR - PP N I

W T e T P W W W T LW Tl VL LT T LT AT TR LT R TR R T T

[Baslll & Turner 76]. ! The development machlne was a Univac 1100/82 runnlng EXEC

VIII, with 1200 baud lnteractive and remote access avallable.

The ten teams In the Fall 1982 course applled the Cleanroom software development
approach, while the five teams In the Fall 1983 course served as a control group (non-
Cleanroom). All other aspects of the developments were th= same. The two groups of
teams were not statistically different In terms of professlionai experience, academlic per-
formance, cr Implementation language experlence. If there were any blas between the
two times the course was taught, It would be In favor of the 1983 (non-Cleanroom)
group because the modular design portlon of the course was presented earller. It was
also the second tlme F. T. Baker had taught the course. N..e that the teams In the
non-Cleanroom group applled a development approach similar to the *‘disciplined team™

approach examined 1n an earller study [Baslll & Relter 81].

The first document every team In elther group turned In contalned a system
speclflcation., composite deslgn dlagram, and implementation plan. The latter element
was a serles of mllestones describlng when the varlous functlons within the system
would be avallable. At these varlous dates (ininimum one week apart, maximum two),
teams from both groups would then submit thelr systems for testlng. An Independent
party would then apply statlsticaily based testing to each of these dellveries and report

to the team members both the successful and unsuccessful test cases. The latter would

! SImp!-T 1s a structured language that supports several string and flle handling

primitlves. In additlon to the usual control flow constructs avallable, for example. In
Pascal. If Pascal or FORTRAN had been chosen. it would have been very likely that
some Indlviduals would have had extenslve experience with the language, and this would
have blased the comparlson. Also, restricting access to a compller that produced execut-
able code would have been very difficult.

Rl

it sen B 3 hedh ‘Sihad o - N I o ol
CL e i h B B R Mach e A I ae R i - N S S A N N S L A 4 LR E I A

be Included In the next test sesslon for verificatlon. Recall that the Cleanroom teams
could not execute thelr programs - they had editlng and syntax-checklng capabllitles
only. They had to rely on the technlques of code readlng, structured walkthroughs, and
Inspections to prepare thelr programs before submlsslon. On the other hand, the non-
Cleanrcom teams had full access to compllation and executlon facllitles to test thelr sys-

tems prior to lndependent testing.

All team projJects were evaluated on the use of the development technlques
presented 1n class, the Independent testing results, and a final oral Interview. In addi-
tlon to these sources, |nformatlon on the team proJects was collected from a background
questionnalre, a postdevelopment attitude survey, statlc source code analysls, and
operating system statistlcs. The following sectlon briefly describes the operationally

based testing process applled to all projects by the Independent tester.

3.2. Operational Testing of Projects

The testing approach used in Cleanroom Is to simulate the developlng system’s
environment by randomly selecting test data from an ‘‘operational proflle,” a frequency
distribution of Inputs to the system {Thayer, Lipow & Nelson 78, Duran & Ntafos 81].
The proJects from both groups were tested Interactlvely at the mllestones chosen by
each ream by an Independent party (l.e., R. W. Selby). A distributlon of Inputs to the
system was obtalned by ldentifylng the loglical functlons !n the system and asslgnling
each a frequency. This frequency asslgnment was accomplished by polling eleven well-
seasoned users of the Unlversity of Maryland Vax 11/780 malllng system. Then test

Jdata were generated randomly from thls proflle and presented to the system. Recording

-

[AT SRR LAY S SRR VO VI T o AT e W AT VAT Tl A V- W A e W Al e o o

i et I A A i S AR N e

DL L N

Flgure 9. Breakdown of responses to the attltude survey questlon, '*‘Dld you mlss
the satisfaction of executing vour own programs?'.
13 - Yes, I missed the satisfactlon of program execution.
11 - I somewhat missed the satisfactlon of program executlon.
4 — No, I dld not miss the satisfactlon of program executlon.
Flgure 10. Relationshlp of program slze vs. missing program executlion.
10.0 + + -+ — —-
Yes - | E |
+ +
| DJC |
o z
Missed | G B |
Program + +
Executlon | |
Some - | \
+ F A +
: .
4.0 +4— —+ -+ —— —
921.0 2001.0
No (3.0) Source Lines
Spearman correlations: —.85 (signlf. = .002) with source llnes; -.70 (sign!f. = .03) with
number separately compllable modules; -.57 (slgnlf. = .09) with number pro-
cedures and functlons.

Figure 11 displays the replles of the developers when they were asked how thelr

deslgzn and codlng style was affected by not belng able to test and debug. At first 1t

would seem surprising that more people did not modlfy thelr development style when

21

™

.“'—' ‘

!
Y

!
o

"A.!L“.'. . ';.’J"a

.,,
e

il

1 .
ot

4.2.1. Summary of the Effect on the Development Process

Summarlzing the effect on the development process, Cleanroom developers 1) felt
they applled off-line review techniques more effectlvely, whille pon-Cleanroom teams
focused on functlonal testing; 2) spent less tlme on-llne and used fewer computer

resources; and 3) made all thelr scheduled dellverles.

4.3. Characterization of the Effect on the Developers

The flrst questlon posed In thls goal area 1s whether the Indlviduals uslng Clean-
room mlssed the satisfactlon of executing thelr own programs. Flgure 9 presents the
responses to a questlon !ncliuded in the postdevelopment attltude survey on thls Issue.
As mlight be expected, almost all the lndlviduals missed some aspect of program execu-
tlon. As might not be expected, however, thls mlilssing of program executlon had no
relation to elther the product quallty measures mentioned earller or the teams’ profes-
slonal or testlng experlence. Also, mlssing program execution dld not Increase with

respect to program size (see Flgure 10).

L /i . At e S S 2P A% R 2l g —_ — ——y T Aot aand _am Jbv e g
o Lo - -~ - lYv S . J_'.‘ d i bl o ¢ -‘ ."‘—." - - - - M ‘. - .

e

i B e Bt B0 i Sk g g iadlh el S Shel sl AiC AR B M e Y e e R e T
ST TR RS Al i el A Lati aiC and s vl et e pes ARt Al oA C R AniU S Al Bl P LA AR S AR T

Schedule slippage continues to be a problem In software development. It would be
interesting to see whether the Cleanroom teams demonstrated any more dlscipllne by
malntalnlng thelr original schedules. All of the teams from both groups planned four
releases of thelr evolving system, except for team "G’ which planned five. Recall that at
each dellvery an independent party would operationally test the functions currently
avallable In the system, according to the team’s Implementation plan. In Figure 8, we
observe that all the teams usilng Cleanroom kept to thelr original schedules by making

all planned dellveries; only two non-Cleanroom teams made all their scheduled

dellverles.

’ Fizure 8. Number of svstem releases.

- J
I
H
F
E
D
C
B
A G
e c
d a b
+- -+ —+ — + —+ —+
o 1 2 3 4) 6

Mann-Whitney signif. = .008

9 Non-Cleanrcom team ‘e’ entered a substantlal portlon of Its system on a remote

machlne, only uslng the Unlvac computer malnly for compllation and executlon. (See
Distinction Among Teams.)

19

. - . i ey e S N e Lo . B AN N .. - s ._, . . J
P U SR . S S W CRIPRL WP . W SN, S SOU0P S S S 3)

B e man 2o aane Jan acny md s M aaods A A A R St Mo Aot BB P RN R T 4
Pl Pl Pt -

were unable to rely on testing methods, they may have (felt they had) appiled the off-

line review techniques more effectlvely.

Since the role of the computer s more controlled when using Cleanroom, one would
expect a difference In on-line activity between the two groups. Fligure 7 dlsplays the
amount of connect time that each of the teams cumulatively used. A comparison of the
cpu-time used by the teams was less statistically significant (MW = .110). Nelther of
these measures of on-iine activity related to how effectlvely a team felt they had used
the off-llne technlques when elther all teams or Just Cleanroom teams were consldered.
Although non-Cleanroom team 'd’ did a lot of on-llne testing and non-Cleanroom team
‘e’ did little, both teams performed poorly In the measures of operational product qual-
Ity dlscussed earller. The operating system of the development machlne captured these

system usage statistlcs. Note that the tlme the Independent party spent testing Is

Included. ® These observatlons exhlbit that Cleanroom developers spent less tlme on-llne
and used fewer computer resources. These results empirically support the reduced role

of the computer {n Cleanroom development.

Flf’iure 7. Connect time n hours during project development. °

G
BE C I HF D JA
e b ¢ a d
0.0 155.0

Mann-Whlitney slgnlr. = ,089

$ When the time the independent tester spent Is not Included, the slgnlflcance levels
for the non-parametric statistles do not change.

18

Lt et e - s e e, R R Y - . L . e N
P I S P I U TP S S S T ST Wl SON LA TR WO SR SR IR, QP JOes s TS JS P W R & —
. - e A AA Al s

Ly

L T L S S DU U S " — —tims

Figure 8. Breakdown of responses to the attitude survey question, *‘Did you feel
that you and your team members effectively used off-line review technlques in
tesnlng vour gro1ect?". (Responses are from Cleanroom teams.) ’

14 - Yes, they were effectlve for testing all parts of the program

5.5 - We used them but felt that they were only appropriate for certaln parts of the
program

8.5 — We used them occaslonally, but they were not really a majlor contributlng factor
to the development

0 - D1d not really use them at all

feellng of effectlve use of
off-llne review technlques: both groups
(team ‘e’ does not appear because of lack of response)

J

H

E I G

D F A C B

d ¢ a b
+ -+ -+ -+ } +- ~+ -+ —+
dld not use effective for
all parts

Mann-Whlitney signif. = .085

The histogram In Flgure 8 shows that the Cleanroom developers felt they applled
the off-llne review technlques more effectively than dld the non-Cleanroom teams. The
non-Cleanroom developers were asked to glve a relatlve breakdown of the amount of
time spent applylng testing and verification techniques. Thelr aggregate response was
39¢c off-line review, 529 functlonal testing, and 99 structural testlng. From this
breakdown, we observe that the non-Cleanroom teams primarlly relled on functlonal

testing to prepare thelr systems for independent testing. Since the Cleanroom teams

" There are half-responses because an individual checked both the second and third
cholces. The responses total to 28, not 30, because two separate teams lost a member
late In the project. (See Distinction Among Teams).

17

L N

e . . R
e nraa s e aaalaiatadadaliacie

-—a .

R

PA" a9 "RV Tt “auti A~ - B aud k- s S i st~ - i I~ R a i AT aiii —aad- e aedie D e b alicC i i e s ie pett i i et MG MR C)

the teams (R = .38; signlf. = .023). Nelther proiessional nor testing experience corre-
lated with off-llne review eflectlveness when elther all teams or Just Cleanroom teams

were considered.

16

. N - ™. - BN >—~ _.- - h . -, . - .--. . - ,-. T c R B . N . -
T RS .. B P N U SEN L - T T .

0 - - - - - Y. - . S . T] Ta . - . - - . . . - N >
AR WA WHE WL SR VAL VTR WY W YT YT SRR D oy S G W WP\ PR I U OV SR 2 P o WP WP ST S Py el o a

e re are o e

ST Ve d

M aest At b o v g T ———— A it Al A Sl e Sl Sd B Y R YA A T T S B T

4.1.4. Summary of the Effect on the Product Developed

In summary, Cleanroom developers dellvered a product that 1) met system requlre-
ments more completely, 2) had a hlgher percentage of successful test cases, 3) had more
comments and less dense complexity, and 4) used more global data items and a higher
percentage of assignment statements. The more successful Cleanroom developers 1)
used more procedure calls and If statements, 2) used fewer case and whlle statements, 3)
reused varlables less frequently, 4) developed subroutines requiring less (software scl-

ence) effort to comprehend, and 5) had more general programming language experlence.

4.2. Characterization of the Effect on the Development Process

In a postdevelopment attitude survey, the developers were asked how effectively
they felt they applled off-line review technlques in testing thelr projects (see Figure 8).
Thls was an attempt to capture some of the Informatlon necessary to answer the first
questlon under thls goal (questlon IL.A). In order to make comparisons at the team
level, the responses from the members of a team are composed Into an average for the
team. The responses to the questlon appear on a team basls In a histogram in the
second part of the figure. Of the Cleanroom developers, teams ‘A, 'D,” 'E," 'F," and 'T’
were the least confldent In thelr use of the off-llne review technlques and these teams
also performed the worst In terms of operational testing results; four of these flve teams
performed the worst In terms of Implementation completeness. Off-line review

etfectlveness correlated with percentage of successful operational tests (wlthout duplicate

fallures) for the Cleanroom teams (Spearman R = .74: slgnlf. = .014) and for all the
teams (R == .78; signlf. = .001); 1t correlated with !mplementation completeness for all
15

Lt . L a RPN . - D - P T 6 o 3 2

PPV

e T e W e TR R R R T e T s T e T e T

- MBI St ar el Bk JSal b Jeam aeiee. Mivue M o4 B° e T arel" SARC aaatan gt aeul il A g g it SadRin K-S S b Calh Al O

Consldering the products from all teams, both percentage of successful test cases
(without duplicate fallures) and Implementation completeness had some correlatlon with
percentage of If statements (R == ..48, signif. = .07, and R = .45, signlf. = .09, respec-
tively) and some negative correlation with percentage of case statements (R == -.48, slg-
nlf. = .07, and R = -.42, signlf. = .12, respectively). Nelther of the operatlonal pro-
duct quality measures correlated with percentage of asslgnment statements when elther
all products or Just Cleanroom products were consldered. These observations suggest
that the more successful Cleanroom developers simplified their use of the lmplementa-
tlon language; l.e., they used more procedure calls and If statements, used fewer case
and whlle statements, had a lower frequency of variable reuse, and wrote subroutines

requiring less software sclence effort to comprehend.

4.1.3. Contribution of Programmer Background

When examining the contribution of the Cleanroom programmers’ background to
the quallty of their final products, general programmling language experlence correlated
wlith percentage of successful operational tests (without dupllcate fallures: Spearman R
= .88, signlf. = .04; with duplicates: R = .70, signif. = .03) and with implementation

completeness (R = .55; signlf. = .10). No relatlonship appears between either opera-

tlonal testlng results or !mplementation completeness and elther professtonal® or testing

experlence. These background/quality reiatlons seem consistent with other studles

[Curtls 83].

' 8 In fact, there are very slight negatlve correlatlons between years of professional ex-
perlence and both percentage of successful tests (without dupllcate fallures: R = -.406,
signif. = .18) and Implementation completeness (R = - .47, signlf. = .17).

pe—————
o 0.
Ty .

S v e e s S S Jhetiieg Shte e a0t ARt e ‘Bt A Y'_-"b‘?"-‘.'."-*

e
1 e
R

et
@

lower complexity density (MW = .079) than did those using the traditlonal approach.

PIREL SRS gl ghe gn Jo o 5
: - 'd L .
- b [. ‘

v Al i gl d

A calculatlon of either software sclence effort [Halstead 77], cyclomatic complexity
[McCabe 78], or syntactic complexity without any size normallzation, however, produced

no significant differences (MW > .10). This seems as expected because all the systems

were bullt to meet the same requlrements.

Comparing the data usage In the systems, Cleanroom developers used a greater
number of global data items (MW = .071). Also, Cleanroom projects possessed a hligher
percentage of assignment statements (MW = .058). These last two observations could
be a manlfestatlon of teachlng the Cleanroom sublects modular design later In the

course (see Case Study Description), or possibly an indlcation of using the approach.

Some Interesting observations surface when the operational quallty measures of the
Cleanroom products are correlated with the usage of the Implementatlon language.
Both percentage of successtul test cases (wlthout duplicate fallures) and Implementation
completeness correlated with percentage of procedure calls (Spearman R = .85, slgnlf.
= .044, and R == .57, slgnlf. = .08, respectlvely) and with percentage of If statements
(R = .82, slgnlf. = .058, and R = .55, signlf. = .10, respectively). However, both of
these two product quallty measures correlated negatlvely with percentage of case state-
ments (R = -.86, signif. = .001, and R = -.89, signif. = .027, respectlvely) and with

percentage of whlle statements (R = -.85, slgnlf. = .044, and R = -.49, slgnlf. = .15,

respectively). There were also some negatlve correlatlons between the product quallty
3 measures and the average software sclence effort per subroutine (R = -,52, signlf. =

.12, and R = -.74, slgnlf. == 013, respectlvely) and the average number of occurrences

of a vartable (R = -.54, signlf. = .11, and R = -.58, signlf. = .09, respectively).

13

ppp————

-~ 3 - Tt - A -7 T et P D R B - . - N NP PR P . N - "L N Y #
1. PR WY U ST AT SLAP WY Sl AT WY VA ST WA S, S v PGSR Ue U UL VoA Sl WA W 0 S A AL A s s e a Sa dad

operatlonal testing by Independent testers. Since both groups of teams had Independent
testing of all thelr dellveries, the early testing of dellveries must have revealed most

faults overlooked by the Cleanroom developers.

These comparisons suggest that the non-Cleanroom developers focused on a ‘‘per-
spectlve of the tester,”” sometimes leaving out classes of functlons and causing a less
completely Implemented product and more (especlally unlque) fallures. Ofl-llne review
technlques, however, are more general and thelr use contrlbuted to more compiete
requirement conformance and fewer fallures In the Cleanroom products. In additlion to
examinlng the operational properties of the product, vartous statlc propertles were com-

pared.

4.1.2. Static System Properties

The first ques‘tlon in thls goal area concerns the slze of the final systems. Flgure 3
showed the number of source llnes, executable statements, and procedures and functions
for the varlous systems. The projects from the two groups were not statlstlcally
different (MW > .10) In any of these three size attributes. Another questlon in thls goal
area concerns the readabllity of the dellvered source code. Two aspects of readlng and
modlifying code are the number of comments present and the denslty of the ‘‘complex-
1ty.” In an attempt to capture the complexity denslty, syntactlc complexity [Baslll &
Hutchens 83] was calculated and normalized by the number of executable statements.
In additlon to control complexlity, the syntactlc complexity metric conslders nesting
depth and prime program decompositlon [Linger, Mllls & Wittt 78], The developers

using Cleanroom wrote code that was more hlghly commented (MW = .089) and had a

LA'E Am A ue g s e a Aud anay ga g am ane mare nare L o date e aatc MR s & iand anil el e gt g Men =N ® GBI AnA S AL AL AN S S S e R CRCE S S '-'-'-"T

——

,,.

fallures, even though they dld better overall. Thls demonstrates that whlle reviewlng
the code, the Cleanroom developers focused less than the other groups on certaln parts
of the system. The more unlform review of the whole system makes the performance of
the system less sensitlve to 1ts operatlonal proflle. Note that operational environments

of systems are usually difficult to deflne a prior! and are subject to change.

Filgure 5. Percentage of successful test cases during operational testing (without

dugllcate fallures).

D J H
E I FA BGC
c
d e b a
58.0 100

Mann-Whitney signif. = .055

In both of the product quallty measures of Implementation completeness and opera-
tlonal testing results, there was quite a variatlon In performance.’ A wide varlation may
have been expected with an unfamlillar development technique, but the developers using:

a more traditlonal approach had a wider range of performance than did those uslng -
Cleanroom In both of the measures (even with twice as many Cleanroom teams). All of

the above differences are magnlfled by recalllng that the non-Cleanroom teams dld not

develop thelr systems ln one monollthlc step, they (also) had the beneflt of perlodic

5> An alternate perspective Includes only the more successful projects from each
group In the comparison of operatlonal product quality. \When the best 609 from each
approach are examlned (l.e., removing teams 'd,’ 'e,’ 'A,” 'E,” 'F,” and 'I'), the Mann-
Whitney slgnlficance level for comparing Implementatlon completeness becomes .043 and
) the signlficance level for comparing successful test cases (wlthout duplicate fallures) be-
comes .034. Thus, comparing the best teams from each approach Increases the evidence
In favor of Cleanroom In both of these product quallty measures.

11

. . . PO T . L. L . T .) .
[' P S S S S S W I et I PP P e I e el s N g U U 4 - - oyl

kv C ot v P e aume aha e die Sanadinc Jine Jhah St Bt infl ol I g el e A A R i B T T R S S S ‘-]
P —— Py D i i AP PO AR e . Sk s Ha

Flgure 4. Requirement conformance of the systems.
J D

I1 FE A B GCH

de b ¢c a
+ : - + + + et
0 16 32
| | I I

22 % 58 % 91 % 100 %
Mann-Whitney 2 signlf. = .088

To compare testing results among the systems developed in the two groups, fifty
random user-session test cases were executed on the flnal release of each system to simu-
late 1ts operational environment. If the flnal release of a system performed to expecta-

X

tlons on a test case, the outcome was called a ‘‘success;” If not, the outcome was a
**fallure.”” If the outcome was a ‘‘fallure’” but the same fallure was observed on an earller
test case run on the flnal release, the outcome was termed a ‘‘duplicate fallure.”” Flgure

5 shows the percentage of successful test cases when duplicate fallures are not Included.

The figure displays that Cleanroom projects had a higher percentage of successful test

cases at system dellvery. 3 When dupllicate fallures are Included, however, the better

performance of the Cleanroom systems Is not nearly as signlficant (MW = .134). 4 This |

Is caused by the Cleanroom projects having a relatively higher proportion of dupllcate

2 The slgnificance levels for the Mann-Whltney statlstics reported are the probabill-
ty of Type I error In an one-talled test.

3 Although not consldered here, varlous software rellabllilty models have been pro-
posed to forecast system rellabllity based on fallure data [Musa 75, Currit 83, Goel 83].

4 To be more succinet, MW wlll sometimes be used to abbreviate the signlflcance
level of the Mann-\Whitney statlistlc.

10

. e L e e
- B D T .‘.:.-.,
PP . WP . P PP PR W

9
.

r
S

L R ——
et aav o ua s dng Bad S e S ekt S v s Wear s ad AR T e it S el o Vo ¥ ae el - ~

4.1. Characterization of the Effect on the Product Developed

Thls section characterizes the differences between the products delivered by both of
the development groups. Inltlally we examlne some operatlonal properties of the pro-

ducts, followed by a comparison of some of their static properties.

4.1.1. Operational System Properties

In order to contrast the operatlonal propertles of the systems dellvered by the two
groups, both completeness of Implementation and operational testing results were exam-
lned. A measure of Implementation completeness was calculated by partitionlng the
requlred system Into sixteen logical functlons (e.g., send mall to an Indlvidual, read a
ptece of mall, respond, add yourself to a malllng list, ...). Each function ln an lmple-
mentation was then assigned a value of two If It completely met its requirements, a
value of one If it partlally met them, or zero If It was lnoperable. The total for each
system was calculated; a maximum score of 32 was possible. Flgure 4 displays thls sub-
Jectlve measure of requlrement conformance for the Systems. Note that In all figures
presented, the ten teams using Cleanroom are In upper case and the flve teams using a
more conventional approach are In lower case. A first observation Is that six of the ten
Cleanroom teams bullt very close to the entlre system. Whlle not all of the Cleanroom
teams performed equally well, a majority of them applled the approach effectively
enough to develop nearly the whole product. More Importantly, the Cleanroom teams

met the requirements of the system more completely than dld the non-Cleanroom teams.

o AR Gub o G s b AL WL dusut ahal dundie ghendl dtenit Ambd Jhedishedh- e B Al AGdR ShalREali Shadl Sl R SRR i I R R A A . R S
L " Hen M I M I R A1 e 2ot =t Y~ e "R = 9B e “ilke e I e e DA e S RS S AN T AT v T e - -+ 9q

of fallure severity and times between fallure took place durlng the testlng process. The
ﬁ operatlonal statistics referred to later were calculated from fAfty user-sesslon test cases
&

run on the flnal system release of each team. For a complete explanation of the opera-
h tlonally based testing process applled to the projects, Including test data selectlon, test-

" Ing procedure, and fallure observation, see [Selby 84].

4. Data Analysis and Interpretation

The analysis and interpretation of the data collected from the study appear ln the
following sectlons, organlzed by the goal areas outlined earller. In order to address the
various questions posed under each of the goals, some raw data usually will be presented
and then Interpreted. Fligure 3 presents the number of source llnes, executable state-

ments, and procedures and functions to glve a rough view of the systems developed.

Flgure 3. System statlstlcs.
Team Cleanroom Source Executable Procedures &
Lines Statments Functlons
A yes 1681 813 55
B yes 1628 717 42
C yes 1118 573 42
D yes 1048 477 30
E yes 1087 624 32
F yes 1213 440 35
G yes 11986 581 31
. H ves 18786 550 51
< 1 yes 1305 808 23
X J yes 1052 6358 24
' o a no 824 410 28
- b no 1429 633 18
¢ c no 2264 999 46
b d no 1629 628 67
t e no 1310 459 43
@

. - P . Sl oAt . - - . N . .t . PR
R T e T L I L P R R P L . .. Y SN I SOy Wy . Bl a0 2 3 o ") oot e

Lasdb ana B v Jua St g¢ B s S dr st el e i End Al il ol Snd st Ml Pate T i I AR A

applylng the technlques of Cleanroom. Several persons mentioned, however, that they
already utlllzed some of the ldeas In Cleanroom. Keepling a simple deslgn supports rea-
dabillty of the product and facllltates the processes of modificatlon and veriflcatlon.
Although some of the objectlve product measures presented earller showed differences in
development style, these subjectlve ones are lnteresting and lend insight Into actual pro-

grammer behavior.

’ Flgure 11.
Breakdown of responses to the attitude survey question, ""How was your design
and coding stvle affected by not belng able to test and debug?".

2 — Yes, my style was substantlally revised.
15 - I modified some of my tendencles.
11 - It d1d not affect my style at all.

Frequently mentloned responses include

— Kept deslgn simple, attempted nothing fancy
kept readabllity of code In mind
already was a user of off-line review techniques
very careful scrutiny of code for potential mistakes
prepared for a larger range of lnputs

One lndlcator of the lmpresslon that something new leaves on people 1s whether
they would do It agaln. Flgure 12 presents the responses of the indlviduals when they
were asked whether they would choose to use Cleanroom as elther a software develop-
ment manager or as a programmer. Even though these responses were gathered
(Immedlately) after course completion, subjects deslring to '‘please the Instructor’ may
have responded favorably to this type of question regardless of thelr true feellngs. Prac-
tlcally everyone Indlcated a wlllingness to apply the approach agaln. It !s interesting to
note that a greater number of persons In a managerial role would choose to always use

1t. Of the persons that ranked the reuse of Cleanroom falrly low In each category. four

R . .- c . T
. R S TP . L ™ L

ARG St ALANE Sterts Rhe e teash SEnil Bhadnh Madt Sl Aot M) § - i S T Sl el N i AR S YA T -

R PR AR M

of the flve were the same people. Of the six people that ranked reuse low, four were
from less successful pro)ects (one from team 'A’, one from team 'E’ and two from team
'T'), but the other two came from reasonably successful developments (one from team 'C’
and one from team 'J’). The particular individuals on teams 'E,” 'I,” and 'J' rated the

reuse falrly low In both categorles.

Flgure 12.

Breakdown of responses to the attitude survey question, ‘‘Would you use
Cleanroom agaln?". (One person dld not respond to thls g_;uesnlon.)
As a software development manager?
8 — Yes, at all times
14 — Yes, but only for certaln projects
5 — Not at all
AsS a programmer?
4 — Yes, for all projects
18 — Yes, but not all the time
53 - Only If 1 had to
0 - I would leave if I had to

4.3.1. Summary of the Effect on the Developers

:') In summary of the effect on the developers, most Cleanroom developers 1) modified

4

E In part thelr development style, 2) mlssed program executlon, and 3) Indlcated they

;.. would use the approach agaln.

. 4.4. Distinction Among Teams

!

4. In splte of efforts to balance the teams according to various factors (see Case Study
Description), a few dlfferences among the teams were apparent. Two separate Clean-
room teams, 'H’ and ‘I, each lost a member late in the project. Thus at proJect comple-

@

tlon, there were elght three-person and two two-person Cleanroom teams. Recall that

23

~—aa o ndian _Shaie Shasee it Shenite S Jhane atbalh dheln A i St il Badl TR Al R
W‘. 1% P L e s (i et~ s e M < g N - R A=A - e . Padi® Pafiat et it o
A M KA .

team 'H' performed quite well according to requirement conformance and testing resuits,
while team 'I' dld poorly. Also, the second group of subjlects did not divide evenly into
three-person teams. Slnce one of those indlviduals had extenslive professional experlence,
non-Cleanroom team ‘e’ consisted of that cne highly experlenced person. Thus at pro-
Ject completion, there were four three-person and one one-person non-Cleanroom teams.
Although team ‘e’ wrote over 1300 source llnes, this highly experlenced person did not

do as well as the other teams In some respects. This Is consistent with another study !n

which teams applylng a ‘‘discilpllned methodology” in development outperformed indivi-
duals [Baslll & Relter 81]. Appendix A contalns the significance levels for the above w
results when team 'e,” when teams 'H’' and °'I," and when teams ‘e,” 'H,” and 'I' are
removed from the analysls. Removing teams 'H' and 'I' has llttle effect on the
significance levels, while the removal of team ‘e’ causes a decrease In all of the
slgnlflcance levels except for executable statements, software sclence effort, cyclomatlc

complexlity, syntactlc complex!ity, connect-time, and cpu-time.

5. Conclusions

This paper describes **Cleanroom’ software development - an approach Intended to
produce hilghly rellable software by Integrating formal methods for speclfication and

deslgn. complete off-line development, and statistically based testing. The goal struc-

ture. experimental approach, data analysls, and concluslons are presented for a

repilcated-project study examlning the Cleanroom approach. This Is the first Investliga-

e T

tlon known to the authors that applled Cleanroom and characterized its effect relatlve

to a more tradltlonal development approach.

PP wr — - oL onl A Jandh s sand L A o I A
Lotk med g v L el L ARd nk sul 4 gl i S et S Sl b ISR R B S Ta
. o B bkt adl Sl 3, « h Sadi i . .

The data analysls presented and the testlmony provided by the developers suggest
that the major results of thils study are 1) most developers were able to apply the tech-
nlques of Cleanroom eflectively; 2) the Cleanroom teams' products met system require-
ments more completely and had a higher percentage of successful test cases; 3) the
source code developed usilng Cleanroom had more comments and less dense complexity;
4) the use of Cleanroom successfully modified aspects of development style; and 3) most

Cleanroom developers Indicated they would use the approach agaln.

It seems that the ldeas 1n Cleanroom help attaln the goals of producing high quality
software and !ncreasing the disclpllne ln the software development process. The com-
plete separation of development from testlng appears to cause a modificatlon in the
developers’ behavlor, resulting In Increased process control and !n more eflective use of
formal methods for software specification, design, off-line review, and verificatlon. It
seems that system mod!ficatlon and malntenance would be more easlly done on a pro-
duct developed 1n the Cleanroom method, because of the product’'s thoroughly concelved
design and hlgher readabllity. Thus, achleving high requirement conformance and high
operational reflabllity coupled with low malntenance costs would help reduce overall

costs, satlsfy the user communlity, and support a long product lifetime.

This emplirical study Is Intended to advance the understanding of the relationship
between Introduclng discipilne Into the development process (as !n Cleanroom) and

several aspects of product quallty: conformance with requirements, high operational rell-

ablllty, and easlly modiflable source code. The results given were calculated from a set
of teams applying Cleanrcom development on a relatlvely small projJect - the dlrect

extrapolation of the flndings to other projects and development environments !s not

25

) . R e . NI
" LR L ATPW W TR YOy Y . ¥ -.L‘x.illl‘.i.d

Ty ey

. - - T D - . -I - - AL

lmplled. Valuable {nsights, however, have been galned from the analysis.

8. Acknowledgement

The authors are grateful to D. H. Hutchens and R. W. Relter for the use of thelr

analysls program In this study.

7. Appendix A.

Flgure 13 presents the measure averages and the signiflicance levels for the above

comparlsons when team ‘e,” when teams 'H' and 'I," and when teams 'e,” '"H,"” and 'I' are

removed. The signlficance levels for the Mann-Whitney statistlcs reported are the pro-

babllity of Type I error In an one-talled test.

Figure 13. Summary of measure averages and significance levels.

Veasure Average Mann-Whitney significance levels
Cleanroom | Non-Cleanroom All Without Without Without
Teams Teams Teams Team e Teams HI | Teams e.H.I

Source lines 1320.0 1491.2 .196 .240 .153 .198
Executable stmts 604.1 625.4 .500 .286 442 .367
#Procedures &

functions 36.5 40.0 357 .500 .330 .500
“Implementation

completeness 82.5 60.0 .088 .197 .093 .196
TSuccessful tests (w/o

duplicate failures) 92.5 80.8 .055 128 .053 .116
CoSuccessful tests (w/

duplicate failures) 78.7 59.2 .134 .285 151 .304
#Comments 194.9 122.2 089 102 190 .198
Syntactic complexity/

executable stmts 1.5 1.6 .079 179 .082 175
Software Science E 6728.6e3 7355.4€3 451 .240 442 .248
Cyclomatic complexity 196.8 212.2 .250 .198 255 248
Syntactic complexity 917.5 1017.0 .500 .286 .500 .305
#Global data items 37.8 24.2 .071 .129 .053 117
T?Assignment stmts 34.2 26.8 058 129 040 .087
Off-line effectiveness 3.2 25 .085 .065 .098 .098
Connect-time (hr.) 41.0 71.3 .089 .012 121 .021
Cpu-time (min.) 71.7 136.1 110 .017 072 .009
#Deliveries 4.1 2.8 .008 .015 .010 022

28

5 > Pdirt A
LR N Sl I A A e g &S A0 AR A0 SCEL L A B ANV A A A AN AL A A R T . .

..........

8. References

(Baker 72]
F. T. Baker, Chlef Programmer Team Management of Production Program-
ming, IBM Systems J. 11, 1, pp. 131-149, 1972.

(Baker 81]
F. T. Baker, Chlef Programmer Teams, pp. 249-254 In Tutorial on Struc-

tured Programming: Integrated Practices, ed. V. R. Baslll and F. T. Baker,
IEEE, 1981.

(Basill & Turner 78]

V. R. Baslll and A. J. Turner, SIMPL-T: A Structured Programming
Language, Paladin House Publishers, Geneva, IL, 1978.

(Baslll & Relter 81]
V. R. Baslll and R. W, Relter, A Controlled Experiment Quantitatively

Comparing Software Development Approaches, I[EEE Trans. Software Engr.
SE-7, May 1981.

(Basill & Hutchens 83]

V. R. Baslll and D. H. Hutchens, An Emplrical Study of a Syntactlc Metric
Famlly, Trans. Software Engr. SE-9, 8, pp. 684-872, Nov. 1983.

[Baslll & Selby 84]
V. R. Baslll and R. W. Selby, Jr., Data Collectlon and .Analysis !n Software
Research and Management, Proceedings of the American Statistical Associa-

tion and Biometric Society Joint Statistical Meetings, Philadelphla, PA, Au-
gust 13-16, 1984.

LT

A P

. e, PR
.' . .
' I

(Baslll & Welss 84]

V. R. Basill and D. M. Welss, A Methodology for Collecting Valid Software
; Englneering Datax, Trans. Software Engr. SE-10, 8, pp. 728-738, Nov. 1984.
- (Currit 83] .
. P. A. Currlt, Cleanroom Certlficatlon Model, Proc. Eight Ann. Software
f'. Engr. Workshop, NASA/GSFC, Greenbelt, MD, Nov. 1983.
3
{ [Curtls 83]

B. Curtls, Cognltlve 3clence of Programmlng, Sizth Minnowbrook Workshop
on Software Performance Evaluation, Blue Mountaln Lake, NY, July 19-22,
1983.

g
.

T W T w T vt s Ttw YT L
A el S Sl R At Ao & Ll i e ot aud ek oull At snd s v Ank i PO S ARSI R el R .

_ryvery
T v
a .
B

T 7y vy v

——r—y iTv4.,rT--‘,.,‘,.,,,_i

(Duran & Ntafos 81}

J. W. Duran and S. Ntafos, A Report on -Random Testing*, Proc. Fifth Int.
Conf. Software E'ngr., San Dlego, CA, pp. 179-183, March 9-12, 1981.

[Dyer & Mills 82}

M. Dyer and H. D. Mllls, Developing Electronle Systems with Certifiable Re-
llability, Proc. NATO Conf., Summer, 1982.

(Dyer 82}

M. Dyer, Cleanroom Software Development Method, IBM Federal Systems
Division, Bethesda, MD, October 14, 1982,

(Dyer 83]

M. Dyer, Software Validation in the Cleanroom Development Method, IBM-
FSD Tech. Rep. 88.0003, August 19, 1983.

(Fagan 78]

M. E. Fagan, Deslgn and Code Inspections to Reduce Errors in Program De-
velopment, IBM Sys. J. 15, 3, pp. 182-211, 19786.

[Ferrentino & Mllls 77

A. B. Ferrentlno and H. D. Mills, State Machines and Thelr Semantics in
Software Englneering, Proc. IEEE COMPSAC, 1977.

(Goel 83]

A. L. Goel, A Guldebook for Software Rellability Assessment, Dept. Industri-

al Engr. and Operations Research, Syracuse Unlv., New York, Tech. Rep.
83-11, Aprll 1983.

(Halstead 77
M. H. Halstead, Elements of Software Science, North Holland, New York,

1977.

[Hoare 69| .
C. A. R. Hoare, An Axiomatic Basls for Computer Programming, Communi-
cations of the ACM 12, 10, pp. 576-583, Oct. 1969.

{Howden 78]

W. E. Howden, Rellabliity of the Path Analysis Testing Strategy, [EFE
Trans. Software Engr. SE-2, 3, Sept. 1976.

[Linger, Mills & W1ttt 79|

R. C. Linger, H. D. Mllls, and B. I. Witt, Structured Programming: Theory
and Practice, Addison-Wesiey, Readlng, MA, 1879.

————

T e

‘e . s

SR AP iadh” Sl ol B g TAA gl M A W ra TV gL TR R TR W TR TR TR TY R

[McCabe 76] _
T. J. McCabe, A Complexity Measure, [EEE Trans. Software Engr. SE-2, 4,
pp. 308-320, Dec. 1976.

(Mills 72a]
H. D. Mllls, Chlef Programmer Teams: Princlples and Procedures, IBM
Corp., Galthersburg, MD, Rep. FSC 71-68012, 1972.

[Mills 72b]
H. D. Millls, Mathematlcal Foundations for Structural Programming, IBM
Report FSL 72-6021, 1972.

(Musa 73}
J. D. Musa, A Theory of Software Rellabllity and Its Application, [FEFE
Trans. Software Engr. SE-1, 3, pp. 312-327, 1975.

[Myers 76]
G. J. Myers, Software Reliability: Principles & Practices, John Wlley & Sons,
New York, 1978.

(Parnas 72]

D. L. Parnas, On the Criteria to be Used In Decomposing Systems Into
Modules, Communications of the ACM 135, 12, pp. 1053-1058, 1972.

[Selby 84]
R. W, Selby, Jr., A Quantltatlve Approach for Evaluating Software Techno-

logles, Dept. . Com. Scl., Unlv. Maryland, College Park, Ph. D. Dissertation,
1984,

(Shankar 82]

K. S. Shankar, A Functlonal Approach to Module Verificatlon, /[EEE Trans.
Software Engr. SE-8, 2, March 1982.

(Thayer, Lipow & Nelson 78])
R. A. Thayer, M. Llpow, and E. C. Nelson, Software Reliability, North-
Holland, Amsterdam, 1978.

B - e

- To. - . . - - . B T
- ta « m e - - ‘e . P -, . L A . A
P . mta®L. . oA 'a _ a.alsl- Pl 4, LIRS WY Ak ol ot ok - Y

AL T T VI

. . .. e

N - - . -‘s..

. .. R R S RS
LR W SUOUE W OT AP Oy

4 R e T T R TR IR R wy ! SRALI R Rt Ay

T

RS N

oy,
A B T

Nt O
S NPT Wi NV N U SN SR A 3

